

Timothy Oneal, Enerflex

Monetary vs. RSV Reality

It's all about the Nameplate ...

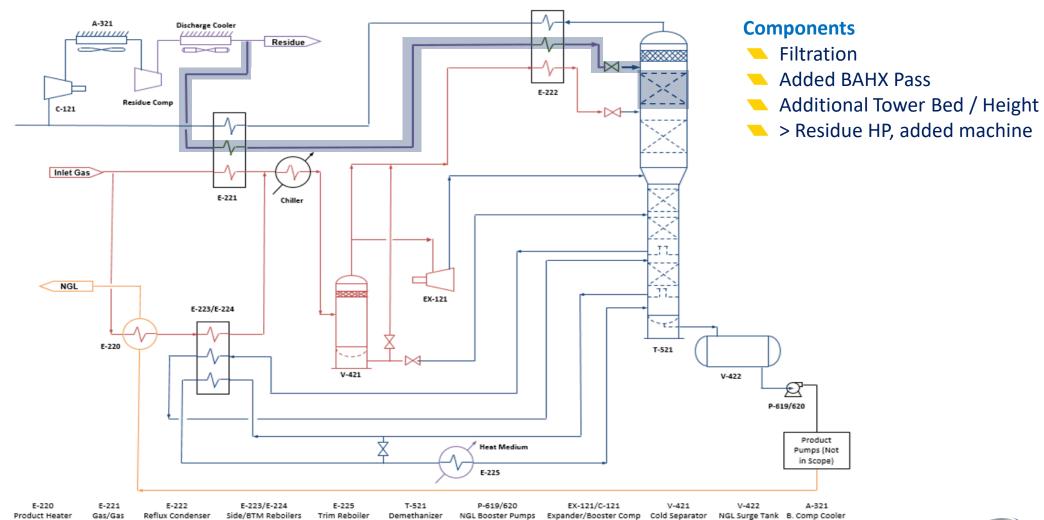
Would a plant by any other size or type cost just as much?


200MM

230MM

250MM

300MM


What Matters Most? ... the Size

- Nameplate: 200 MMscfd has been extremely popular.
- However, the market trends upward with capacity and the current mega facilities are pinched on plot and process >1 BCFD.
 - Site permitting and pre-planning for electrical expansion can hinder the facility's total processing capacity.
- Limited added plant capex is required to shift to 25% or even 50% greater nameplate. (CAPEX 10% to 30%).
 - Requires very limited added plot space.
- Fixed Fee Contract (stable for processors), @ \$0.65/Mscf
 - @ 200MMscfd, \$47.1 million
- @ 250MMscfd, \$58.9 million
- @ 230MMscfd, \$54.2 million
- @ 300MMscfd, \$70.7 million
 - Scale-up 6/10^{ths} rule applies: Turnkey CAPEX ROI of <2.5 years vs. 200 MM.
- Facility planning should address current market sizes and potential expansion to maximize profitability.
 - Balance of the plant should be updated or flexible.

What is Recycle Split Vapor?

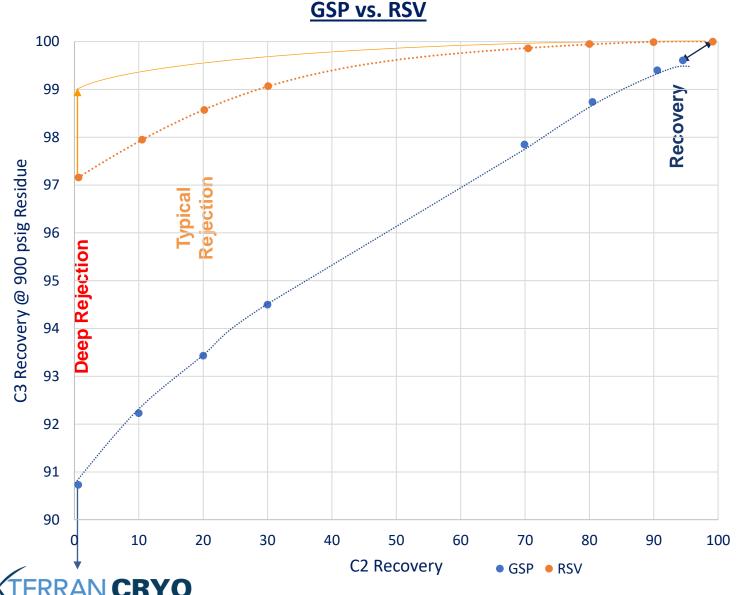
EXTERRANCRYO PART OF THE ENERFLEX FAMILY OF SOLUTIONS

RSV Features

Added Recycle Reflux

- - \geq recoveries versus GSP even at richer gases

CO₂ Tolerance


- Added reflux / tower pressure positively influences CO₂ freeze tolerance
- Although rejecting C₂ means rejecting CO₂, and therefore avoiding freeze, RSV plants have the following advantage:
 - ≥ 99% C₂ recovery at 1% CO₂ in comparison to GSP near 91%

Larger Backend

- - For a fixed fee contract this could be \$6 million / year or more

GSP vs. RSV – The Reality in Recovery

Typical Narrative: RSV >> C_2 %, however...

Rejection: GSP plants suffer losses in C_3 recovery.

• As rejection of C₂ deepens, ~10% C₃ is lost.

Additionally: as GPM \uparrow , Curve shifts \checkmark : C₃ \checkmark

- Energy of condensation for heavier HC streams.
- \oint flows of residue; the cooling for inlet gas.

Residue Pressure Sensitivity:

- RSV plants perform differently from 900 to > 1,200 psig residue.
- C₃ recovery in deep rejection pivots from 97% to 99%.
- \uparrow Residue pressure = \uparrow C₃ Recovery.

Actual Performance:

 Based on integration of heat, the central recoveries around 30% to 60% C₂ may suffer a dip when switching from one mode to the other.

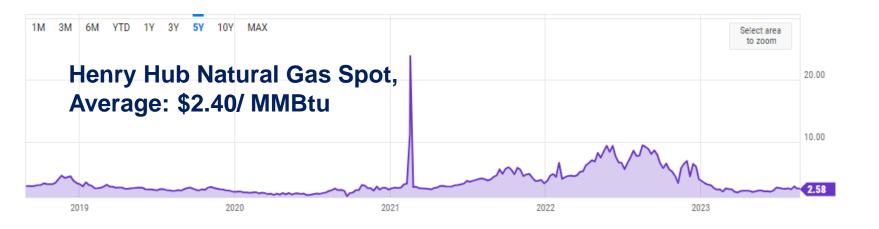
RSV: Equipment and Precautions

BAHX ALPEMA Temperature Swings, Cyclical Fatigue

- Typical: 28°C or 50°F max delta T
 - Frequent: 1°C or 1.8°F fluctuation.
 - Infrequent (startup / shutdown): 2°C/min or 3.8°F/min
- Suggest temperature probes on all sides of exchangers and to understand flow to each leg.
- Not necessarily worse than a GSP plant, ~ 20-year life, if maintained.

Filtration

- Aerosol residue oil is detrimental to BAHX performance. Failure = GSP style operation.
 - Cleaning is arduous.
 - Peco Facet "Natural Gas Pipeline Contaminant Removal Methods"
 - Transcend "The Impact of Aerosol Contamination on RSV Efficiency"
- Recommended: (1) Full residue stream filtration and (2) dedicated RSV slip stream filtration for aerosol.
- Delay RSV start-up until after compression break-in. Avoid pockets, be wary of slugs and ambient. Potential heat trace.
- Larger plants (~300MM⁺) with centrifugal recompression avoid this altogether.


Tower

- Potential higher tower pressure = relative volatility and separation are worse ... \uparrow HETPs / bed heights required.
- RSV bed physical properties already lead to higher HETPs. (Strigle, Packed Tower Design and Applications, EQ 9-1, 1987).
- Larger towers, when truck transport is difficult, may require shipment in pieces with field welds.

Commodities - Spot Price Averages



Butane Mt Belvieu Spot, Average: \$0.93/gal

C₅⁺ Mt Belvieu Spot, Average: \$1.31/gal

Utilities \$0.06/kWH, 1HP = 0.756kW -\$0.10 on all liquids for transport and fractionation

Plant Stats

• <u>7.2</u> GPM gas with <u>1.2</u> C_2/C_3 ratio

- Higher Heating Value (HHV) match at 1,047
- C₂ is not a valued liquid
 - From \$0.24 to \$0.31

Contracts (Superior Pipeline, "Gas Processing 101" Aug 2016 Midcon GPA)

How do I monetize incremental propane?

RSV

100.0%

100.0% 100.0%

99.3%

100.0%

94.0%

14.9%

98.9%

99.9%

295.6M

- **FF:** Fixed Fee (stable for processors), \$0.65 / mscf
- Percent of Proceeds (Gas + Liquids): Mild R/R ~ >12% to meet FF

230 MM

C₂%

C₃%

C₄%

GSP

C₂ @ \$0.31 in the \$\$\$

25.5%

93.9%

98.8%

291.6M 289.7M 290.7M 291.45M

94.1%

99.6%

99.9%

• Percent of Liquids: Medium R/R ~ >20% to meet FF

Plant Stats

 <u>5</u> GPM gas with <u>2.6</u> C₂/C₃ ratio 	<u>230 MM</u>	GSP	RSV
 Higher Heating Value (HHV) match at 1,073 Due to incremental C₃, deeper rejection is an option 	C ₂ %	17.0%	11.3%
	C ₃ %	91.8%	99.0%
	C ₄ %	98.5%	100.0%
	Revenue-Utility-Processing/Year	221.5M	224.2M

Contracts

- **FF:** Fixed Fee (stable for processors), \$0.65 / mscf
- **Percent of Index: ^risk** / reward for processors
- Percent of Proceeds (Gas + Liquids): Mild R/R ~ >16.2% to meet FF
- Percent of Liquids: Medium R/R ~ >39.5% to meet FF
- Percentage contracts require \uparrow to match fixed fee, due to \downarrow richness and $\uparrow C_2/C_3$ ratio.

The Cost:

- RSV modifications + residue compression + turnkey adders
 - ~ \$8 million⁺ assumed.

The Payback (ethane negative market):

- Fixed fee payback: 0.4 to 1.5 years with capacity upgrades, or...
- Without capacity upgrades with ROI < 5 years,

 - Get paid for incremental propane

Alternative:

- Kicker incentives for greater contract recoveries are sometimes part of fixed fee contracts, but more commonly from C₂ perspective.
- RSV Fixed Fee processor with kicker, considering both C_2 and C_3 gains, is better.
 - A curve of rejection-based contract could maximize the kicker.

Expectation versus Execution

7.2 GPM but... C_2/C_3 ratio increases from 1.23 to 2.65

- It's not leaner, it's just rich in the wrong places...
- Higher Heating Value (HHV) Issues = $> C_2$ required
 - Pivots RSV from 15% C_2 to 47% C_2 to hit < 1,080 HHV
 - Benefit: Since RSV loses less C_3 , then deeper rejection can occur.
 - GSP is closer to 51% required recovery.
 - The revenue on gas and liquids is nearly identical.
- Composition Limited: Volume of C₃+ is lower. Profitability is diminished.
 - Higher POL contracts required: ↑ to 29% to meet fixed fee rate of a 1.23 ratio gas.
 - Ask for 50% more liquids.

Conclusions

- Percentage of profit / liquid contracts are subject to C_2/C_3 sensitivity
 - If not varied based on C_2/C_3 ratio are subject to higher risk
- Fixed fee is unaffected, but the liquid volume is reduced by 23%
 - Kicker therefore is lower and ROI longer

C₂ in the Green: RSV was made for this

- Rejection recollection, due to HHV target of 1,047 HHV, the 7.2 GPM gas performs as follows -
- Recovery
 - Economics are per previous 94% GSP, 99% RSV
 - Most GSP plants are going to only see 90% to 92%
 - Ethane economics pivot, and highest percentage recovery is not always best.
 - Incremental ethane doesn't always add up the way incremental propane does.

\rightarrow	<u>230 MM</u>	GSP	RSV
	C ₂ %	25.5%	14.9%
	C ₃ %	93.9%	98.9%

	Septembe	er 2018	Ju	ly 2020	Jun	e 2022	Ma	y 2023	Ju	ly 2023
Nat Gas (\$/MMBTU)	\$	3.00	\$	1.72	\$	7.67	\$	2.15	\$	2.55
Ethane (\$/MMBTU)	\$	7.95	\$	3.23	\$	9.67	\$	3.07	\$	4.80
Adjusted Ethane (T&F) (\$/MMBTU)	\$	6.44	\$	1.72	\$	8.16	\$	1.56	\$	3.29
RSV vs GSP Rejection		3.4M\$		3.2M\$		9.4M\$		7.5M\$		3.5M\$
RSV vs GSP Recovery		3.2M\$		0.1M\$		0.7M\$	-	0.1M\$		0.8M\$
Suggested Operation	F	RSV Rec	I	RSV Rej	R	SV Rec	R	SV Rej	F	SV Rec
Rec vs Rej RSV	2	44.2M\$		-0.7M\$		3.4M\$	-	8.6M\$		8.7M\$

*\$0.10/gal transport + fractionation ~\$1.51/MMBTU

*Rejection +21.5 GPM C₃

https://www.eia.gov/energyexplained/hydrocarbon-gas-liquids/prices-for-hydrocarbon-gas-liquids.php

Conclusions and Findings

RSV plants > C_3 recovery across all performance modes.

RSV has a quick ROI of 2 to 5 years even in a C_2 negative market.

Alternatively, a larger nameplate can help pay for the process in less than 1 to 2 years.

RSV Rejection economics for 230MM can yield \$3 million to \$9 million / year in C₃ revenue; depending on richness, level of rejection, and C₂/C₃ ratio.

GPM alone is not enough to define POP or POL contracts, C_2 / C_3 ratio is key.

RSV in a GSP mode, may have higher nameplate.

 $\rm C_3$ stability is key for profitability and should make its way into contracts.

A plant that pivots between a focus on nameplate, C_2 recovery, and C_3 stability is more flexible; therefore, desirable than classic GSP.

Questions?

Thank You

Timothy Oneal toneal@enerflex.com

